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0. I n t r o d u c t i o n  

We consider some aspects of the following notions: 

Definition O. 1: 
(1) (Needed reals). Suppose that  we have a cardinal characteristic ~ of the 

reals of the following form: There are (in most cases: Borel) sets A_,A+ C IR 

and there is a (in most cases: Borel) relation R C A_ × A+ such that  

-- IIRll := min{iYI : Y c_ A+ A (Vx E A_)(3y E Y)R(x,y)}. 

We call ]IRII the norm of R. A set Y C A+ is called R-adequate if 

(Vx E dom(R))(3y E Y)R(x,y). We say that  ~? E ~2 is needed for R if for 

every R-adequate set Y there is some y E Y such that  ~ is Turing reducible to 

y, abbreviated ~ ___T~r Y. 

If A+ q: ll~ but can be mapped continuously, injectively into ~ by a mapping 

c which is, as a function on the digits, computable in both directions, then we 

call the real ~ needed for R and c if for any R-adequate set Y C_ A+ there is 

some y E Y such that  ~? ~_Tur c(y). We call such a function c a coding. In this 

situation, a real 71 is called needed for R, if it is needed for R and c for any coding 

C. 

(2) (Weakly needed reals). We call a real ~ weakly needed for R if for any 

R-adequate set Y of minimal cardinality there is some y E Y such that  ~ _<Tar Y. 

Every needed real is weakly needed. Sections 4 to 7 will give some information 

on the reverse direction. A very good motivation for the investigation of needed 

reals is given in [4]. 

In the rest of this introduction, we describe briefly what will be proved in the 

sections. In Section 1 we prove that  only hyperarithmetic reals are needed for 

the cofinality relation on the ideal of Lebesgue null sets. In the second section 

we prove the analogous statement for the slalom relation. In the third section 

we extract from these two results sufficient conditions for the property "every 

needed real for R is hyperarithmetic". In the fourth section we construct a 

forcing extension such that  all hyperarithmetic reals are weakly needed for the 

reaping relation in the extension. This quite difficult model is further used in the 

fifth section, where we build a composed relation for which there are more weakly 

needed reals than needed reals. In Section 6 we prove that  all needed reals for 

the reaping relation are in complexity less than 0 ~ = {(x, Yl :x ,y  E w,x E 0Y}, 

where 0 y is the yth jump of the degree 0 of all recursive sets. Moreover, using 

the model of Section 4 once more, we get that  it is consistent that  for the reaping 
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relation weakly needed and needed do not coincide. In the final section we give 

a sufficient criterion for a relation R such that  the two notions "needed for R" 

and "weakly needed for R" coincide. From the proof in Section 1, we derive 

one example of a relation for which the criterion is true. The definitions of the 

mentioned relations will be recalled at their first appearance. 

1. N e e d e d  rea ls  for  C o f ( H )  

In this section we answer affirmatively Blass' question whether only hyperarith- 

metic reals are needed for the cofinality relation on the ideal of Lebesgue null 

sets. 

In this section we work with two particular relations on the reals: For 

functions f ,  g: ~ ~ w we write f <* g and say g eventually dominates f if 

(3n < w)(Vk > n)( f (k)  <_ g(k)). The dominating relation is 

D - - { ( f , g )  : f ,  g E ~w A f <_* g}, 

and the cofinality relation for the ideal of sets of Lebesgue measure zero is 

Cof(Af) -- {(F,G) : F, Gare G~-sets of Lebesgue measure 0 andF  C G}. 

We write cof(Af) for IiCof(Af)[ I. 

Before stating our first theorem, we review some notation: For s E ~>2 = 

{r : (Srn Ew)( r :  m --~ 2)}, we wri te lg(s)  = dom(s). I f r  E"~->2 and s E ~>-2, 

we write r ~ s if r = s r lg(r). Let r ,~s denote that  r ~ s and r ~ s. A subset 

T C_ ~>2 is called a tree if it is downward closed, i.e., if for all s E T for all r ~ s, 

we have that  r E T. An element r E T is a leaf if there is no s E T s u c h t h a t  

r ,~s .  F o r a t r e e T C _ ~ > 2 a n d s o m e n E ~ w e s e t T r n = T N n > 2 .  F o r t E _ n 2  

set t =  {f  E"~2 : f r n  E t}. The set of infinite branches of T i s  denoted by 

lim(T) = {f  E ~2 : (Yn)(f  [ n E T)}. The same notation applies to trees on 

"~>H for an arbitrary set H. We will consider trees whose nodes are not finite 

sequences but finite sets of finite sequences. 

Leb denotes the Lebesgue measure on the measurable subsets of ~2, the product 
1 space of w copies of the space {0, 1} where each point has measure ~. 

We work with the Amoeba forcing in the representation of [2, 3.4B]: 

Q = {p : p C_ ~>2,p is a tree without leaves and Leb(lim(p)) > 1/2}. 

For trees p, q E Q, q is a stronger forcing condition than p, abbreviated q _> p, if 

q C_ p. In addition to the Jerusalem convention, that  stronger conditions are the 
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greater or equal ones, we also follow the alphabetical convention [6]: letters later 

in the alphabet or carrying more primes or stars are used for stronger conditions. 

The weakest element in Q is ~>2, and we write 1 for it. We write G for some 

Q-generic filter and T = N G  for the generic tree. For x • V[G], let x denote a 

name of x. 

Definition 1.1: 

(1J) 

Q1 is the set of conditions p • Q that  fulfill: 

1 
for all n < w, s C_ p R n2, Leb(~ R lim(p)) # ~. 

CLAIM 1.2: Qt is dense in Q. 

1 Proob Let p E Q and Leb(lim(p)) = ~ + c. Let s~, n < w, be an enumeration 

of Ui<~ p(~2). Now choose, by induction on n, p = P0 _D Pl _D P2"'" in Q 
1 1/2J+2) such that  Leb(lim(pn)) _> 5 + ¢(1 - ~j<n  . We set ¢0 = c. In step 

1 n, we set Cn := min({Leb(~ n lim(pn)) - ~ : i < n A Leb(~ N lim(pn)) - ½ > 

0} U {En-1}) and choose Pn+l C_ Pn such that  Leb(~'-~n N lim(pn+l)) ~ ½ and 

such that  Leb(lim(pn+l)) _> Leb(lim(p~)) - ¢ ~ / 2  n+2. Then automatically also 

1 for i < n and once property (1.1) is true for a condition Leb(~ n lim(pn+l)) ¢ 

Pn and si, i < n, it holds also for all later Pk because we chose the pk's such 

that  the differences in their measures are sufficiently small. Then by the choices, 

The following definition is crucial for building an algorithm that  uses the oracle 

T already in V. For this purpose we require: incompatibility of a finite part of 

T with a condition p can be read off a finite part o f p  (this is (b)), that  measure 

1 is forbidden in a preciser way than in equation (1.1) (this is (c)), and that  the 2 

convergence from above of (IP n k2i/2k : k E w) to Leb(lim(p)) is sufficiently fast 

(this is (d)). 

Definition 1.3: We say p obeys g if the following holds: 
(a) p e Q1, g • < g(n)). 
(b) If n < w, s C_ p R n2 and Leb(~ N lim(p)) < ½, then 

1 I{P • g('~)2 : p r n • s,p • < ~. 

(c) If n < w, s C_ p N ~2 and Leb(~ n lim(p)) _> ½, then Leb(~ N lim(p)) _> 

½(1 + 1/g(n)). 

(d) If n < w, then 

Leb(lim(p)) > [pN g('~)21 ( 1 _ 2_~). 
- 2g(n) 

The main part of the section will be the proof of 
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THEOREM 1.4: Suppose that ~) E V N •w, that M E V is a Turing machine and 

that p obeys g and 

(1.2) p I[-Q "M computes ~1 from T". 

Then ~1 is computable from g. 

Proof." We fix such an ~. 

Fix for a while j E 0J. Since the statement "for every j there is some j '  such 

that M computes ~/(j) using T [ j ' "  is forced, there is some stronger condition 

r that forces a value for jt for the fixed j. So [r [ j'] could serve as a condition 

that describes enough of the oracle T in order to give the right computation of 
~/(j). 

Now the assigment j ~+ j '  (say the minimal one) is an element of V Q, and 

in general not in V. But since our computation is not allowed to use additional 

information except for g, we will look, given j ,  at all possible r's and j "s  simul- 

taneously. The procedure to give a computation in V will be built upon guessing 

finite parts of conditions r and finite parts of T that are already determined by 

the same finite part of r. But, such an approximation, starting with trials of 

size zero and successively increasing the size, could give a unique (and, of course, 

halting) computation that gives the same outcome on all possibilities within the 

guessed part and still be not the right guess because a too small part of r is used 

and only a larger approximation would mirror correctly what happens in the 

forcing process. However, fortunately from some approximation size onwards, 

the outcome will not change any more. So we can remedy the problem of wrong 

guesses by first choosing a suitable n(,) and then looking into densely many 

forcing conditions above p A ~(*)2 simultaneously, and search increasing in m for 

an aproximation of size m. Starting from some m, all larger approximations will 

give the same result. The search will be based upon g. And, from the definition 

of "p obeys g" it follows that any eventually larger function could serve as well. 
We assign some structure to the collection of finite initial segments of members 

of Q1, that will allow us to work with finitely branching trees. These will be the 

trees (Tp!g *), ~) from Definition 1.7. The procedure that computes ~/relative to 

g will first search for a sufficiently large finite approximation of r, and then argue 

that this approximation already determines the run of M with oracle T on the 

given input j .  The height of this approximation in Tp!g *) will be an appropriate 

measure for being a sufficiently large approximation of r. 

Definition 1.5: A set t C_ m->2 is a subtree of "~>2 iff t is not empty and closed 

under initial segments and (Vv E t (7 "~>2)(3e E 2)(~(e) E t). 
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Definition 1.6: We say that a subtree t of m->2 obeys g if the following holds: 

(a) t is a subtree of m->2, g E •w, (Vn)(n < g(n)). 

(b) If n < m, g(n) <_ m, s C t M n2, and if Leb(~Mt)  <: ½, then 
1 [{p E g(n)2 : fl I n  E s, p f } [ / 2  g(n) < 3" 

(c) I f n < m , g ( n )  < m , s  c t M n 2 ,  and if Leb(~ M t) > 1 . . . .  3, then Leb(~ M t) _> 
1(1 + 1/g(n))  . 

(d) If g(n) < m, then 

it j o 21 ttn  n 21 l_ 
2g(n) --> 2 m --> 2g(n) 

(note that  the first inequality holds trivially). 

The properties "t obeys g" and "p obeys g" look similar. In order to decribe the 

features of the similarities that  will be useful later we make another definition: 

Definition 1.7: 

(1) 
(2) 

(3) 
(4) 

(5) 

Assume that p obeys g and n(*) < w and that m _> n(*). 

Nbp!g *) = {q E ~ : q I (n(*) + 1) = p I (n(*) + 1) and q obeys g}. 

mT~!;) = {0 # t c ~->2 : t is a subtree of m->2 and t obeys g and 

t r (n(*) + 1) = p [ (n(*) + 1)}. 

We let Tp!g ) = UO<m<~o mTp!g ). 

If t E Tp!g *), then let m(t)  be the minimal m such that t C_ m>-2. 
- -  T n ( * )  The partial order <3 on ~v,g is defined as follows: s <l t lift r (m(s)+l )  = s. 

Our first claim about the trees Tp!g *) and the neighborhoods Nhn(*) .,_p,g concerns 
the easier inclusion: members of the neighborhoods can be seen as branches of 

the trees: 

CLAIM 1.8: (1) Wp!g *) is a tree whose m- th  level is mWp!;). IfO <_ m < re(t) and 

t E Tp!g *) then t r (m + 1) ~ t and t I (m + 1) E mTp!;). 

(2) I fq  E Nb~!g *) and m < w then q r (m + 1) E mTp!~). 

In the next claim some easy and useful facts are listed. 

CLAIM 1.9: (1) Every p E (~ obeys some g. 
. n ( , )  (2) q E hm(Tp,g ) iff (Vm)q [ (m + 1) E mTp!;). 

(3) I f p  E (~ obeys g and n(*) E w then Nhn(*) C Q~. - ' ~ p , g  _ 

(4) I f  gl ~_* g2 then there is g~ recursive in g2 such that gl <<_ g~, where < is 
the pointwise order. 

(5) It" gl _< g2 and p obeys gl, then p obeys g2. 
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(6) Fixing p, n(*), the function ra ~ mT~!~) is recursive in g. 

The next claim will allow us to apply K6nig's Lemma at an important step in 

the proof of Claim 1.13. 

CLAIM 1.10: Suppose that 

(1.3) (3k)(g(k) < n(*) A Leb(lim(p)) (1 _ > 
1 1 

Then Nb~y; ) is the set of unions of co-branches of the tree T~y; ) . 

Proo~ Suppose that for all m E co, q [ (m + 1) E mT~!g*). We prove that 

q E Nb~!d ). We first prove that q E Q. From the definition of "subtree of m->2" 

it follows that q has no leaves. 

The main point is: Why is Leb(lim(q)) > Xv For every m > g(k), we have by 
2 "  

clause (d) of Definition 1.6 

[qM g(k)2[ [qM m 2 [ >  [qM g(k)2[ ( 1 _  2_~) " 
29(k) ~-- 2 m - 2g(k)) 

But as g(k) <_ n(*) clearly q M g(k)2 = pM g(k)2. As p obeys g we have 

Leb(lim(p)) >_ [PMg(k)29(k) 21( 1 -  2-7)" 

Since the quotients are approaching the measure from above, the right side is 
greater than or equal to Leb(lim(p))(1 - 1/22k). So 

Iq N ~21/2 m >_ Leb(lim(p))(1 - 1/22~) 

and this holds for every m E co. Hence Leb(lim(q)) _> Leb(lim(p))(1 - 1/22~) and 

the right hand side is strictly larger than ½ by equation (1.3). 
Now we have to prove that q E Q1. So let n E co and s C_ q M n2. Suppose that 

1 So by 1.6(b) for all m, 1 Then for all m, Leb(~Mq M m2) > 7" Leb(gMlim(q)) = 7" - 

1 Leb(~M q Cl m2) >_ 7(1 + 1/g(n)). Hence also the limit is greater than or equal to 
1(1 + 1 / g ( n ) ) .  2 

NOW we have to prove that q obeys g. This follows from Definition 1.6 and the 

nature of the limit process. 

The reverse inclusion is Claim 1.8(2). I 
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Definition 1.11: Assume that T is a Turing machine. We let FM,k be the set of 

finite partial characteristic functions h, dom(h) C ~>2 such that if M runs with 

the input k it uses only h as an oracle. So it answers h(p) =? for p E dom(h) 

according to h and does not ask questions of the kind h(p) =? for p !~ dom(h). 

We let ei,h(k) be the result of such a run. 

Definition 1.12: For p E Q set 

A(p) = {h: (~m)(h: m>-2 --+ 2Apt) ~ h g cAT) }. 

For t E mT~!~) let 

A(t) = {h :(3n)(h: n->2-+ 2Ag(n) _< mA h-1({1})is a tree 

A h - ' ( 1 )  C tA I (PEg( '~)2:h(prn)- -1ApEt i l  1)}  
- 2g(~)  > ~ • 

CLAIM 1.13: (1) For every p E Q and finite u C ~>2 there is some h E A(p) 

whose domain is a superset of u. 
(2) Ifp E Q1 obeys g and h: n->2 ~ 2 then pMg(n)2 determines the truth va/ue 

ofh E A(p); in fact h E A(p) iff h E A(p [ (g(n) + 1)). 

Proof: (2) By looking at the relation _<Q we see: For h: ~>2 ~ 2, p Ib h q: cAT 
o 

iff  (h-l({1}) ~ p or (h-l({1}) C_ p and Leb(h-l({1}) M lim(p)) < ~)). But the 
right hand side of the Aft-clause can be read offp [ (g(n) + 1) by clause (b) of the 

Definition of "p obeys g". I 

Now we are ready to finish the proof of Theorem 1.4. So assume that p E Q1, 

~? E ~2, p I~ "M computes ~ from the oracle T" and p obeys g. We show that 
is computable from g. 

STEP (a): Let k > 0 be such that 

1 (1 1 < Leb(lim(p)) ).  2 2k-1 

STEP (b): Let n(*) _> g(k). 

STEP (C): Now we have for every q E Nbp!~ ) and j < w that 

A(q) fq A(p) M FM,j ¢ 0. Why? 
1 This follows from the First, by the choice of n(*), Leb(lim(p) fq lira(q)) > 7" 

computation: lira(p) C_ p M n(*)2 C p M g(k)2 and the same holds for q. Since both 

obey g we have 

lim(p) > IpM2g(k ) g(k)21 ( 1 -  2-~z-k ) 
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and the same holds for q. Hence lim(p) and lim(q) each are missing only a 

part of p M g(k)2 of measure less than ]pn 9(k)2[/2 g(k)+2k. The missing part of 

lira(p) N lim(q) in p n g(k)2 is at most twice this. Hence 

Leb(lim(p) nlim(q)) > IpMg(k)2i(12g(k) 1 ~ (1 1 ~ 1 _ - 22k_-----T] _> Leb(lim(p)) - - - ] 2 2  ~-1 > 2" 

So there is some r E Q that is above both. As r _> p, it forces that M running 

on j and oracle T gives ~(j) and the run uses only h = T M n->2 for some n. 

STEP (d): If eM,h(j) is well-defined and h E A(p), then eM,h(j) = ~(j). This 

is because ~ E V. 

STEP (e): For every j there is some m, such that for all t E mT~!~) we have 

that A(t) ~ A(p) M FM,j ~ ~. Why? This follows by Claim 1.10 and step (c) and 

K6nig's lemma applied to the finitely branching tree Tp!g *). 

STEP (f): For every j there are m and tl E mTp!g*) such that for every t2 C 

mTp!g*) we have A( t l )  n A(t2) A [~M,j 7 £ ~. This holds by (e): We can take 

= p  r ( m + l ) .  

STEP (g): For every j < w and e • 2 the following are equivalent: 

(i) , ( j )  = e. 

(ii) For some  m < and tl  • for every • there is h • 

A(tl)  CI A(t2) n FM,j such that eM,h(j) = e. 
(i) ~ (ii) is step (f). 

(ii) ==~ (i): Let m, tl be as in (ii). Let t2 = p [ (m + 1). By (ii) there is some 

h • A(t~) n 5(t2) a FM,j, eM,h(j) = e. By step (b) h • A(p). So by step (d) we 

are done. 

By Claim 1.9(6), the procedure indicated in (ii) of step (g) is recursive. 

So finally Theorem 1.4 is proved. I 

COROLLARY 1.14: Suppose that p E (~ and p IFQ r] is computable from T. Then 
~7 is needed for the dominating relation. 

Proof: Choose some q _> p, q E Q1 and some machine M such that q IFQ M 

computes ~ from T. Then choose g such that q obeys g. By Theorem 1.4, 

is computable from g. Since q obeys also every gl > g and since finite changes 

in the oracle may only change the algorithm but not the fact whether a real is 

computable from the oracle, ~ is also computable from any gl _>* g. Hence ~ is 

needed for the dominating relation. I 
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The following equivalent formulation of neededness is useful to show that  in a 

generic extension that  contains a real ~ such that  for all reals ~ in the ground 

model yR~, all needed reals in the ground model can be computed from such a 

FACT 1.15 Blass [3, following Definition 1]: An equivalent condition for "~ is 

needed for R" is 

(1.4) (3x E dom(R))(Vy E range(R))(xRy --+ ~ <_T~ Y). 

Proof: Suppose that  ~ is needed for R and that  there is no x as in (1). Then 

(Vx E dom(R))(3y E range(R))(xRy A ~ l~Tur Y). So we can build a R-adequate 

set from all these y's, that  shows that  ~ is not needed for R. For the other 

implication: Fix x as in (1). Every R-adequate set has to contain some y such 

that  xRy and hence ~ <_Tu~ Y. | 

If R is a transitive relation and T~ is a given R-adequate set, then x with the 

property of equation (1.4) can be found in 7~. 

THEOREM 1.16: Every needed real for Cof(Af) is needed for the dominating 
relation. 

Proof: Let {Ai : i < n} be a Cof(Af)-adequate set, such that  each Ai is a Fz 

set. Let ~/E ~2. 

For each i choose a countable elementary submodel Ni of (7-/(~3), E) to which 

and Ai belong. We let Gi be a subset of Qlv~ that  is generic over Ni and let 

Ti = T[Gi]. Now let A* be 

A t = {p E ~2 : no pt E ~2 which is almost equal to p 

(i.e., p(n)=p'(n) for every large enough n) belongs to lim(Ti)}. 

A* is a null set: Since it is a tail set, by the zero-one law it can only have 

measure zero or one. Since it is disjoint from the set lim(T~), that  has measure 

one half, it is a null set. 

By genericity of Ti and because A~ E Ni and because Ai is a nullset in Ni 
we have that  Ai C_ lim(Ti) c. The same argument shows that  for all s E ~>2 we 

have that  {s~f : 3s'(is' I = IsI A s~f E Ai)} is a subset of (lim(Ti)) c. Hence we 

have that  Ai C_ A*. Therefore also {A~ : i < ~} is a Cof(Af)-adequate set. We 

choose i such that  ~? is recursive in A~ and in M1 its supersets. Since Cof(H)  is 

transitive, such an Ai exists by Fact 1.15 and the remark thereafter. Then ~ is 

also recursive in AT, because A T 2 Ai. If ~ is recursive in A* it is also recursive 
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in Ti. Since this holds for arbitrary Gi, by Theorem 1.4, applied to some p E Q1 

that obeys some g, the real ~ is needed for dominating. I 

FACT 1.17: (a) (Solovay [11]) Every real that is needed for the dominating 

relation is hyperarithmetic. 

(b) (Jockusch, [8]) Every hyperarithmetic real is needed for the dominating 

relation. 

Blass [4, Theorem 6, Corollary 8] showed that every real that  is needed for D 

is also needed for Cof(Af) and hence that  all hyperarithmetic reals are needed 

for Cof (H) .  So this gives the other inclusion in the following corollary: 

COROLLARY 1.18: Exactly the hyperarithmetic reals are needed for the Cof(Af)- 

relation. 

2. N e e d e d  reals  for t he  s la lom re l a t i on  

In this section we deal with a forcing L which is closely related to the localiza- 

tion forcing from [2, page 106]. Theorem 2.4 is analogous to Theorem 1.4, but 

for the forcing L. Theorem 2.16 is analogous to Theorem 1.16 together with 

Corollary 1.18. 

F o r h = ( u e : ~ E c o ) , m < c o ,  l e t ~ r n = ( u e : ~ < n ) .  

Detlnition 2.h 

L = {p :p--= (n, fi) -- (nP, fiP),fi = (u~: g E co),u~ E [co]-<~, 

(]ue] : t~ E co) is bounded}, 

~Ew 

Again we denote the weakest element (0, (~ : i < co}) of L by 1. For p E L, we 

write b(p) = max{luel : e E co}. 

Notation 2.2: Let G be a name for an L-generic element. Let 

S = sa  = U{~tP In  p : p =  (n B,~tp) E G}. 

We write _S for a L-name for S. We think of S as a subset of co × co and have its 

characteristic function chz(g, m) -- 1 iff m E u~. 

Detlnition 2.3: We say p = (n, fi) E L obeys (g,b) if (W < w)(g < g(~)), b E co, 

(Ve)(u~ C_ g(g)) and (Ve)(iu~l ___ b). Note that  the condition 1 obeys every (g, b). 
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THEOREM 2.4: Assume that M is a Turing machine and that ~7 • ~'2. Suppose 

that p • L obeys (g, b) and 

(2.1) p H-L Mcomputes ~ from S. 

Then ~ is computable from g. 

Proof: As in the proof of Theorem 1.4, we use (2.1) and the fact that p obeys 
(g, b) in order to find densely many conditions above p and finite approximations 

of chs and of the respective condition. We will keep the numbering of the claims 

and of the definitions used in the proof of Theorem 2.4 parallel to the numbering 

in the proof of Theorem 1.4, though many of them are much easier for L and will 

be almost obsolete or empty. But this procedure will help to establish a general 

scheme. 

Definition 2.5: A tuple (n, (ue : ~ < m)) is a finite part of a condition iff n _~ m 

and, for all t < m, u~ is a non-empty finite set. 

Definition 2.6: A finite part of a condition (n, (u~ : e < m)) obeys (g, b) iff 

(re < m)(u~ C_ g(g) A I~el < b). 

Now, in the following we not only number analogously but also use similar 
names Nbp!~,)b and mTn(*)p,g,b for the corresponding objects. We use g so that  the 

Tn!a*)b will be finitely branching, and we use b to get the boundedness clause in 

the definition of a condition. 

Definition 2. 7: Let p = (n(*), tiP) be a condition that obeys (g, b). 

q A (Vi)u  c (1) Nb ,~ = { q =  (nq,ft q) • L : n  q _>n( . )A(Vi  < n(*))u p = u i 

g(i) A (Vi)]u~] ~ b}. As the trees and neighborhoods in Definition 1.7 used 

only p [ n(*), also here the part of u p above n( . )  is ignored. The algorithm 

will depend on g and on a finite part of p. 

(2) If m > n(*), let rain(*) = { ( n , ( u i :  i < m ) ) : n  > n(*),(Vi < n(*)) 
- -  p , g , b  

(ui = u p) A (Vi < m)(ui C g(i) A lu i l<  b)}. If m < n(*), let rain(*) 
- -  - -  p , g , b  : 

{(m, Ira)}. 
(3) T~(g*,~ = Um<~ rain(*) 

p , g , b "  

(4) For (n , (u i :  i < m)) • mwn(*) we let m(n , ( u i :  i < m)) = m. 
p , g , b  

(5) For (n, fi), (n', ~) • Wp!g*,~ we write (n, ~) <3 (n', ~) iff fi is an initial segment 

o f ~ a n d f i  [ n = ~  In.  
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CLAIM 2.8: 

(1) T~!;,~ 

then t 

(2) Irq = 

Tn(*) is a tree whose ra-th level is mTn(*)p,g,b" I f  O _< m _< re(t) and t E ~p,g,b 

I (m + 1) <1 t and t I (m + 1) E mTn(*) 
- -  p ,g ,b"  

, m T n ( * )  (n, fi) E Nbp(g*,~ and n <- rn < w then (n, (t l m)  E p,g,b" 

CLAIM 2.9: 

(1) Every 

(2) 

(3) 

(4) 

(5) 
(6) 

p E L obeys some (g, b). 

q = (n, f i)E l im(W~l~,~)iff(Vm)(min(m,n) ,f tFm)E mTn(*) 
~ p ,g ,b"  

I f p =  (n(*),fi) E L obeys (g,b) and n(*) E w then Nbpl;,) b C_ L. 

I f  gl <* g2 then there is g~ recursive in ge such that gl <_ g~, where <_ is 

the pointwise order. 

I f  gl <_ g2 and p obeys (gl, b), then p obeys (g2, b). 

Fixing p, n(*), the function m ~ mTn(*) is recursive in g. 
p ,g ,b  

CLAIM 2.10: Suppose that p E L obeys (g,b). Then Nbp(;,)b is compact as a 

subset of P("~>2), and is the set of unions of w-branches of the tree Tp!g*,~. 

Proof." This is obvious. 

Definition 2.11: Assume that T is a Turing machine. We let FM,k be the set of 

finite partial characteristic functions h, dom(h) C w ×~2 such that if M runs with 

the input k it uses only h as an oracle. So it does not ask questions of the kind 

h(p) =? for p • dom(h). We let eM,h(k) be the result of such a run. 

Definition 2.12: For p E L set 

A(p) = {h:  (~m)(h: m × m ~ 2Apl}  z h ~ ch_s)}. 

For t = (n(*), {ui: i < m)) E mTp!~) let 

Aft )  = {h :h: .~ × .~ ~ 2 A (Vi < n ( , ) ) h - l ( { 1 } )  n ({i} × w) = {i} × ui 

A (Vi E [n (* ) ,m) )h - l {1}  M ({i} × w) _D {i} × ui}. 

CLAIM 2.13: (1) For every p E L and finite z C_ w x w there is some h E A(p) 

whose domain is a superset of z. 

(2) I f  p = (n(*),fi)) E L obeys (g,b), n( , )  _< m, and h: m × m ~ 2 then 

t = (n(*),fi r m) determines the truth value o f h  E A(p);  in fact h E A(p) iff 

h e Aft). 

Proof: (2) By looking at _<L we see: For h: m × m -~ 2, p IF h ¢- ch_s iff 

(h- l ({1})  :~ Ui<m{i} x ui or (3i < n(*))(h- l ({1})  VI ({i} x w) ~ {i} x ui)). 

I 
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Now we finish the proof of Theorem 2.4: Assume p = (n(*), (ui : i E w)) E L, 

r/E ~2, p I~- "M computes r/from the oracle S" and p obeys (g,b). We show that 

r/is recursive from g. 

We name the steps in parallel to the steps in the end of the proof of 

Theorem 1.4. Since n(*) is already given, the first two steps are empty. 

STEP (C): Now we have that for every q E Nbp!g,~ and j < w, 

A(q) M A(p) M FM,j ¢ O. 

Why? It is easy to see that p and q are compatible in L. So there is some r E Q 

that is above both. As r _> p, it forces that M running on j and oracle S gives 

~(j) and the run uses only h := chs M re×m2 for some m. 

STEP (d): If eM,h(j) is well-defined and h E A(p), then eM,h(j) = n,(j). 

STEP (e): For every j there is some m, such that for all t E mTn(*) we have p,g,b 
/k(t) N /k(p) I"1 FM,j ~ ~. Why? This follows by (c) and K5nig's lemma applied 

finitely branching tree Tp!~,)b . to the 

STEP (f):  For every j there are m and tl E mTn(*) such that for every t2 E ~p,g,b 

mTp!9*) we have A(t l )  M A(t2) M FM,j ~ 0. This holds by (e): We can take 

t l  = (n(*) ,  (Ui : i ( m ) ) .  

STEP (g): For every j < w and e E 2 the following are equivalent: 

(i) ~/(j) = e. 

mTn(*) for every t2 E "~T ~(*) there is h E (ii) For some m < w and tl E p,g,b p,9,b 

A(t l )  M A ( t 2 )  [3 FM, j such that eM,h(j)  = e. 

(i) ~ (ii) is step (f). 

(ii) =~ (i): Let m, tl be as in (ii). Let t2 = (n(*),fi [ m). By (ii) there is some 

h E A(t l )  M A(t2) M FM,j, eM,h(j) = e. By step (b) h E A(p). So by step (d) we 

are done. 

By Claim 2.9(6), the procedure in (ii) of step (g) is recursive. I 

COROLLARY 2.14: Suppose that p E L and p IFQ "~ is computable from S_". 
Then ~ is needed for the dominating relation. 

Proof." Choose some q > p, q E L and some machine M such that q II-Q "M 

computes z/from _S'. Then choose (g, b) such that q obeys (g, b). By Theorem 2.4, 

is computable from g. Since q obeys also every (g~, b) for g~ _> g and since finite 

changes in the oracle may only change the algorithm but not the fact whether a 
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real is computable from the oracle, ~ is also computable from any gt _>, g. Hence 

is needed for the dominating relation. I 

Definition 2.15: S • ~([w] <~) is called a slalom iff for all n, IS(n)[ _< n. 

THEOREM 2.16: Exactly the hyperarithmetic reals are needed for the slalom 

relation 

SL = {(f ,S)  : f e ~w A S is a slalom and (Vn • aJ)(f(n) • S(n))}. 

Proof: First we show that  only hyperarithmetic reals are needed for SL: Let 

{Si : i  < ~} be an SL-adequateset ,  ~ • ~ 2 M V  be needed for SL. We take 

Ni -~ (H(23), E) such that  ~, Si • Ni. Then we let Gi be L-generic over Ni. 

Now we set S~ = SG~ = U{fi p I n  p : p •  G~}. Then we have that  for all but 

finitely many n, Si(n) C_ S~(n). Let r# be computable from Si. Then for all 

wider slaloms S~ than Si there is a (possibly even) wider slalom from which r/ 

is computable as well, because that  collection of slaloms wider than S~ is SL- 

adequate. Then by density ~ ~Wur SGi for all generic Gi. Hence we may choose 

p and M and (g, b) such that  Theorem 2.4 applies. 

All hyperarithmetic reals are needed for SL, because all of them are needed 

for D. Suppose that  {(S~ : n • w) : i < ~} is SL-adequate and that  ~ E ~2 is 

hyperarithmetic. Then 7) = {(maxS~ : n • w) : i < ~} is D-adequate and hence 

there is some element (max S~ : n • w) • 7) from which ~ is computable. But 

then of course ~ is also computable in (S / : n • w). I 

3. A general  connect ion  

In this section, we collect sufficient conditions and give a general scheme for the 

proofs of "every real needed for R is hyperarithmetic". As in Theorems 1.4 and 

2.4 we use a forcing that  adds an R-dominating real p. The first step is to prove 

that  "being computable in p and being in V implies being hyperarithmetic". A 

form of this step will be given in Theorem 3.1. The second step is to show that  

every needed real for R is computable from any generic p. We write a general 

version of this step in Theorem 3.6. 

Now we take (Q, R) instead of our two examples (Q, Cof(Af)) and (L, SL). R 

is a Borel binary relation on the reals, and Q is a notion of forcing adding some 

element in the range of the extension of R. Since R is Borel, we can use its code 

and thus get a unique extension of R to a larger model of ZFC. From the work 

in the previous two sections we collect the following scheme: 
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THEOREM 3.1: Assume that 

(a) There is a notion "p obeys g" such that i f  g' > g and p obeys g then p 

obeys g'. For a dense subset Q' of  Q we have (Yp E Q')(3g)(p obeys g). 

(b) T;,g is a recursive finitely branching tree whose nodes axe finite functions. 

(c) Q is a forcing notion, p • Q, p obeys g, p is a Q-name, and 

p I~-Q p E lim(Tp,9). 

(d) For a dense set of Po E Q' there is some p >_ Po such that the following 

conditions are fulfilled: 

(a) Let A(p) = {u E Tp,g : p I) z u ~ p}. This is a subtree of  Tp,g. 

(/3) Let S~,g = {t : for some leafless subtree T '  of Tp, a and some k, 

t = {~, • T ' :  levelw,,.~(~) <_ k}) ,  and order Sp,g naturally. 

(7) Sp,g is a recursive subtree of Sp,~ such that 

(i) Tp,g is the union of an w-branch of Sp,g, 
(ii) for every branch [ = (Q : ~ E w) of Sp,g there is q E Q such that 

q is compatible with p and Tq,g = Uee~ te. 

(d) ~ ~ ~2 or ~w. 

Then the following holds: i f  p IFQ "~ is recursive in p" then ~ is hyperaxithmetic. 

Proof'. For some p as in (c) and Turing machine M 

p I~-Q "M computes ~ from p". 
~ 

Now we prove some intermediate facts, and the proof of 3.1 will be finished with 

3.4. 

FACT 3.2: For every w-branch (tk : k E w) of Sp,g and j C w for some 

(equivalently every) large enough m E w for every v E tmMlevelk(Tp,9) if M runs 

on input j and oracle v it finishes (so we do not ask oracle questions outside the 

domain) and gives the result ~(j) = k. 

Proof" There is q such that  Tq,g C_ Unc~tn.  Let r _> q, and let G C_ Q be 

generic with r E G. If M runs with piG] [ m it gives ~(j), so for some v E Tp,g, 

C_ piG]. Now we proceed as in 1.4. If there is some p of height k that  gives 

another computation result, then it is incompatible with r. But then this is 

witnessed by some initial segment of r. Take m larger than all these initial 

segments. 
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FACT 3.3: For j E w, for every large enough m, for every t E levelm(Sp,g) there 

is v E t M levelm(Tp,g) such that  if M runs with v as an oracle then it computes 

~](j). 

Proof: By the previous fact and KSnig's lemma applied to Sp,g. 

CRUCIAL FACT 3.4: For j E w, k E 2, the following are equivalent: 

(i) ~(j) = k. 
(ii) There are some m and some t o E levelm(Sp,g) such that  for every t I E 

level,~(Sp,g) there is v E t o M t 1 such that  if we let M run with input j and 

oracle v then the run finishes and there are no questions to the oracle that  

do not have an answer, and it gives answer k. 

Proof: Analogous to the end of the proof of Theorem 1.4. 

So we have proved 3.1. 

Remark 3.5: Usually, Sp,g depends only on a finite part  of p, so we have that  

Q = Uke~ Qk, and for all k E w we have Sp,g as above being the same for each 

p E Q k .  

THEOREM 3.6: Suppose Q is a notion of forcing and p is a Q-name and 

1 IF (Vx)(xRp). Then 1 Ib "every real in V that is needed for R is recursive 

in p". 

Proo~ L e t p  E Q ands]  E V. Since ~ is needed for R, by Fact 1.15 there is 

some x in dom(R) that  for any y such that  xRy, ~ <_Tur Y. Now if p IF xRp, 

then p Ib ~ <<_Tur P. I 

4. W e a k l y  n e e d e d  reals  for the  reap ing  re la t ion  

In this section we show that  for any ground model V there is a forcing extension 

V[G] such that  all hyperarithmetic reals from V are weakly needed in V[G] for the 

reaping relation. The extension is necessarily a model where weakly needed and 

needed are different and the CH fails, because of the following: In Section 6 we 

shall prove in ZFC that  not all hyperarithmetic reals are needed for the reaping 

relation, answering another question from Blass' work [4]. In a model of CH, 

the notions "needed real" and "weakly needed real" coincide, and thus in such a 

model not all hyperarithmetic reals in any submodel are weakly needed for the 

reaping relation. If we take a ground model V with CH, then from the coincidence 

of needed and weakly needed and from the fact that  there are so few needed reals 

we see that  there are hyperarithmetic reals in V that  are weakly needed in V[G] 
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but not weakly needed in V. So the model of this section, together with the 

result from Section 6, gives an example for the fact that  in contrast to the notion 

of "being needed", the notion of "being weakly needed" is not absolute. 

THEOREM 4.1: For any ground model V there is a generic extension V[G] by 

some c.c.c, forcing such that in V[G] every hyperarithmetic real in V is weakly 
needed for the reaping relation. 

The proof of this theorem will occupy the whole section. First we recall the 

definition of the reaping relation: 

Definition 4.2: The relation 

R = { ( f , X ) :  f E w2, X E ~[w] A f I X  is constant} 

is called the reaping or the refining or the unsplitting relation. We say "X refines 

f "  if f I X is constant. We say "7~ refines f "  if there is some X E P~ that  refines 

f .  Finally, we say " ~  refines F"  if for every ] E F we have that  7~ refines f .  

The norm of this relation is called ~, the reaping number or the refining number 

or the unsplitting number. 

In this section we often use (finite) boolean combinations. For any finite set u 

and y E u2 and Ai, i E u, we set 

A~ = { Ai, if f = 1, 
w \ A i ,  i f f  = 0; 

and 

 t,J = N A2 
iEu 

Definition 4.3: Let g E ~w be strictly increasing and g(n) > n. 

(1) We say A E [w] ~ is g-slow if (3~n)IA M g(n)] >__ n. 

(2) 

/~g={f  : dom(f)  E [w] w, for i E dom(f)  we have that  f(i)  = ( f l ( i ) , f 2 ( i ) )  

and f2(i) E [g(fl(i))]>-fl(~) and l imsup( f l ( i ) :  i E dom(f))  = w}. 

(3) We say that  a sequence .4 = (A~ : i < ~} of infinite subsets of w is (g, ~)-o.k. 
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if 
if k < co, fo . . . .  , fk-1 E 5cg, 0 dom(fe) = B E [co]~ 

~Ek 

and lim sup(min{fel(i): g • k}:  i • B) = w, 

then for some c~ = c~((fe : ~ < k)) we have that:  

For every u~ E [a \ a] <~ and ~e • ~2  the set 

{n • B :  (V~ < k)( f~(n)  n .~[v~] ¢ 0)} is infinite. 

Remarks: f E jcg implies that  UiEdom(/) f2(i)  is g-slow. Ifg _< g' then 9cg C jog,. 

CLAIg 4.4: We get an equivMent notion to "4 is (g, ~)-o.k.", i f  we modify the 

Definition 4.3(3) as in (a) and/or as in (b), where 

(a) We demand 4.3(3) only for fe E 2:9 that additionally satisfy dom(f0) = 

. . . .  dom(fk_l)  = co. 

(b) We demand 4.3(3) only for fo, . . . , f k-1 • ~ such that (min{f~(i):  i < k}:  

i < B) is strictly increasing (we can even demand, increasing faster than 

anygiven h), and for i e B,  max{f~(i) : f < k} < min{f)( i  + 1): f < k}. 

Proof." (a) Suppose f o , . . . ,  fk-1 C Jr9 in the original sense, and that  we have 

required the analogue of 4.3(3) only for 5g in the restricted sense. We suppose 

that  Ne<k dora(f•) = B and take a strictly increasing enumeration {b~ : r E w} 

of B. Then we take ]e: w -+ [w] <•, re(r) = fe(b~) for r • w. The analogue of 

4.3(3) for the f g  in the restricted sense gives c~ E ~ and infinite intersections in 

4.3(3) for the ]e. The intersections are also infinite for the original re. 

(b) Suppose that  k < w, fo . . . .  , fk-1 • ~-g, A~E~ dom(fe) = B E [w] ~ and 
lira sup(min{f~ (i) : ~ • k} : i • B) = co. Then we can thin out the domain B to 

some infinite B', inductively on i such that  the fe r B '  fulfil all the requirements 

from 4.4(b). 

The following lemma describes the combinatorics that  is used in the final 

model: 

LEMMA 4.5: Let g • ~co. I f r  < ~ = cf(~) and if there is some A that is (g ,s ) -  

o.k., then every rea / tha t  is computable in every function g' >_* g is weakly needed 

for the refining relation. 

Proof." Let T~ = {B~ : a < 17~[} be a refining family of size ~ < t~. Since the 

family A is refined by ~ ,  for every i < ~ there are some ai < 17~1 and u(i) E {0, 1} 

such that  B~  C_ A[ (i). Since ~ is regular and since r < a, there are some ~ < 2 

and some/~ < 17~1 such that  

Y = {i < . ( i )  = e A --  Z} 
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is unbounded. So B~ C_ ~icY A~. We claim that  BZ is not g-slow. Why? 

Otherwise we have C = {n < w : IBz M g(n)l > n} E [w] ~. We take a partial 

function f = ( f l  f2) with C = dom(f ) ,  f l ( n )  = n and f2(n)  = BZ M g(n). 

Then f E 9cg. Now let a E ~; be given. Then we take u0 such that  Uo = {7}, 

7 E Y, 7 > a and r~0 = {(%0)} and rid = {(%1)}. Then we do not have 

( 3 ~ n ) f 2 ( n )  MA ° ~ 0 and ( 3 ~ n ) f 2 ( n ) M A  1 ~ ~ at the same time, because BZ is 

refining A e. So A is not (g, ~)-o.k., in contrast to our assumption. 

But now we can compute recursively from B~ some g' >_* g; for example, we 

may take g'(n) =( the  n th  element of BZ) +1. Hence every real that  is computable 

in every function g~ _>* g is recursive in B~. I 

Now we show that there is a version of Lemma 4.5 that  works simultaneously 

for all hypetari thmetic reals in V. 

LEMMA 4.6: There is some g: w -+ w such that every hyperarithmetic real is 

computable in any g~ >_ g. 

Proof: For any number e E w for a Turing machine take a real re and a lower 

bound ge E ~w such that  for all gr >_ ge, e computes re with the oracle gr, if there 

are such re, ge. Now take g eventually dominating all the ge, e E w. I 

We will find _~ that  is (g, n)-o.k, in a forcing extension. However, the construc- 

tion works only for g E V. So the constellation in which we use Lemmata 4.5 

and 4.6 is as follows: 

COROLLARY 4.7: Let g E V be as in Lemma 4.6 in V. I f  in V[G], ~ < n = cf(~) 

and there is some ft that is (g, ~)-o.k., then every hyperarithmetic real in V is in 

V[G] weakly needed for the refining relation. 

So, how do we get a c.c.c, forcing extension in which r < ~ = cf(~) and in 

which there is some A that  is (g, ~)-o.k.? The rest of this section will be devoted 

to this issue. We consider the case t~ = cf(~) > R1 and intend to show that  for 

every g it is consistent that  "t = R1 and there is some A that  is (g, ~)-o.k." The 

construction works for any fixed g E V. It is open whether a statement like "for 

all g E V[G], there is some .~g that  is (g, t~)-o.k, and ~ < ~ = cf(~)" is consistent. 

We give a sketch of the construction in the consistency proof. We first add t~ 

Cohen reals to some ground model where there are at most n reals. We show that  

from these we get some A that  is (g, n)-o.k, for all g simultaneously. The next 

step is to extend further, in R1 steps, so that  along this iteration a refining family 

of size R1 is added. The lengthy work is to show that  we can find an extension 
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such that  A stays (g, a)-o.k, for one chosen g. This is not trivial because fig is 

enlarged. 

Definition 4.8: (1) h'g = K = {(P, _A) : P is a ccc forcing and ][-p " j  is (g, n)- 

o.k."}. For a fixed g, we often leave out the subscript. 

(2) (P1,A~) _</,- (P2,A~2) iffP~ < P2 and A~ = A~2. 

We really mean the same names .~ not just the same interpretations. Indeed 

we think of a finite support iteration (P~,Q~ :/~ < R l , a  _< R1} giving the Pa's. 

But we formulated 4.8 a bit more general, because also in the next claim the 

Qz's do not appear. 

CLAIM 4.9: (1) We have that K ~ O. In fact, i f  P is the forcing adding n Cohen 

reals and ~t is the enumeration of the n Cohen reals, then (P, _A) E Kg for any 

function g E V. 

(2) I f  (P~, ~4) E Kg for a < 6, 6 a limit cardinal, and (P~ : a < 6} is increasing 

and continuous w.r.t, the complete embedding relation, and P = U~<6 P~, and 
P has the c.c.c., then (P, ~4) C Kg and a < ~ ~ (P~, ~4) <_K (P, ~1). 

Proof: (1) Suppose that  f 0 , . . . ,  fk-1 C V[G,~] are injective functions. We take a 

such that  f o , . . . ,  fk-1 e V[G~] where Ga is a generic filter for the first a Cohen 

reals. Suppose that  ~t E u*2, ue C_ t~ \ a. Now a density argument gives that  

these .4[~*] "flip for infinitely many n E B" to 0 or to 1 within f~(n) for every 

~ < k .  

(2) Now we show that  It-p "_A is (g,a)-o.k.". Only the case of cf(~) = w is 

not so easy. We suppose that  (~ = Unew a(n), 0 < a(n) < a(n + 1). Towards a 

contradiction we assume that  p* C P~, and 

p* IFp "_B, (f_e : ~ < k} form a counterexample to _A being (g, n)-o.k." 

For each n E w we find (qn,i : i C w} such that  

(a) qn,i E P, 

(•) qn,0 = P*, 

('~) P ~ qn,i <_ qn#+l, 

(6) for some bn, , P.(n)-names we have 
~ 

qn,i If- " -- bn,z is the i-th member ofB, ft(bn i) ( f l  ~ ~,, ~ ~ ~ ,  ~ J n , g , i , J n , ~ , i ]  , 
~ 

(C) qn,i I OL(rt) = qn,o I o~(n) • p* [ a(n). 



22 H. M I L D E N B E R G E R  A N D  S. S H E L A H  Isr.  J.  Math .  

How do we choose these? Let n and c~(n) be given. Then we choose ' qn, i  
t 1 r increasing in i such that q~n,i E P and bn,i, ( f ) n , i ,  (f~)~n,e,i in V and 

q~,i I}- A the ith element of B bZn,i A f~(b~,i) 1. :1 ' : ~ = ( ( f ) n , £ , i '  (f2)tn,~,i)' 
t < k  

Then we take 
bn,i  =(b in , i ,  qtn, i r Po~(n)) ,  

f l , £ , i _  1 ! ! - ( ( f  )n,~,i,qn,i r Po,(n)), 
f2n,t, i _ 2 t t - ( ( f  )~,e,i,qn,i I P~(~)), 

qn,i =P* r c~(n) u q~n,i r [c~(n), 5). 

Here, the restriction I c~ is any reduction function witnessing P~ < P (see [1]), and 

in the general case, if P~ is not the initial segment of length c~ of some iteration, 

the term qrn, i I Ice(n), ~) has to be interpreted as some element from a quotient 
forcing algebra. 

Now for every n we define P~(~)-names 

B "  = : i < w}, 
~ 

fe,n: B~ --9 V, 
f&n(bn j 1 b 2 b 1 2 ~ , = (fe, n( n,i),f~,n(n#))-- (f~,n,i,_ fe,n#)" 

Now we have that 

p* I}- B n e [w] s°, fe,~ is a function with domamB n and 

limsup(f~,n(b): b e B ' )  = w and 

fe2,n,i when defined is a subset of [0, 1 _ ~1 ,, g(f~,~,i)) of cardinality > Jr,n# • 
~ 

As (Po4n), ~4) is in K we have for every n 

P* r c~(n) Ikpo~(n , "for some ~ < ~ for every u~ C_ [~ \ ~]~o for every ~/e • ~2 

{ b e B ~ n :  A 2 N_A [n*] } f~,n(b) ~ ~ is infinite." 
t < k  

Let /~n < ~ be such a P~(n)-name. Since Po4n) has the c.c.c., there is some 

J~n < ~ such that I~-p,,(,.) J~n < fl~ < g- Since ~ is regular we have that /~* = 
< 

It suffices to prove that 

p* IF "fi* is as required in the definition of (g, n)-o.k." 
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If not, then there are counterexamples ue E [n\/~*]<~o, ~t E u*2, q and b* such 

that  

p* < _ q E P = P a ,  
(4.1) 

q I~ "{b E B :  (Yg < k)(f2(b ) M A[~t] ~ 9)} C_ [0, b*]". 

For some n(*) < w we have that  q E Pa(n(,)). Let G C_ P be generic over V, 

and let q E Ca(n(,)). So by the choice of/3n(, ) </~* we have that  

q I}-p<,,.~, "C = {b E B'n(,) : (re < k)(f~,n(,)(b ) M .~[~d_ ~ 0)}is infinite". 
~ 

Recall that  B'n(,) and fe,n(,)(b) are Pa(n(,))-names and that  :~[nd_ is a P0-name. 
~ 

Now B' n(,) = {b~(,),~ : i  < co}, so for some i we have that  bn(,),~[G] > b*. So 

qn(*),i E G M P~(~(,)) forces "the i-th member of _B is b~(,),~ and f__e(b%,),~) = 

f~,~(.)(b%.),i) = ~J~,n(.),i, Je,~(.),iJ • Note that  qn(.),.i I a(n(*)) = p* I a(n(*)) 

according to (c), and hence q~(.),i ~ q- So there is some r _> q and r >_ q~(,),i. 

Such an r forces the contrary of the property forced in (4.1), and finally we 

reached a contradiction. | 

The conclusion of the next claim is a strengthening of 4.3(3). Let D be an 

ultrafilter on co. Instead of "infinite" we require "being in D".  Since ultrafilters 

are closed under finite intersections we need to mention only one function in Fg. 

Claims 4.10 and 4.11 are like [10]. For h: co --+ co we write limD(h(i) : i E co} = co 

if for all m < w we have that  {i : h(i) > m} E D. 

CLAIM 4.10: Assume that in V: 

(a) 71 is (g, ,~)-o.k. 
(b) n = 2 ~° is regular. 

Then there is an ultrafilter D on co such that 

i f / E  .Tg and dom(f)  E D and limD(fx(n) : n 6 dom(f)} = w 

(4.2) then for some a /  < ~ for every u E [~ \ a / ]  <~° and r]E u2 

we have that {n E dom(f)  : f2(n) M/i [7] # 9} E V. 

Proof  The following is a mock forcing argument. We work with the partial 

order .45 o, which is < n-closed. We have to meet only n dense sets. So, by 

taking one union over n conditions in the end, we find a generic in V. Let 

:Fg = {f j  : j < ~}. Let A50 be the set of tuples (D, i, a) such that  

(i) D is a filter on w containing the co-finite subsets, ~ ¢ D, i, a < ~, 

(ii) D is generated by < ~ members, 
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(iii) if k < ~ and for f < k, j¢ < i, and dom(fd~ ) E D and 

limD(fX (n):  n E dom(fj~)} = ~ and ue E [ a \ a ]  <~°, ~/e E u~2, then 

~<k e<k 

Let (D1, i l ,  al) <~p (D2, i2, a2) if both tuples are in A? and 

(a) Vl C_ D2, il < i2, a l  _< a2, and 

(fl) if k < w and { j0 , . . . , j k -1}  C_ il, dom(fj~) E D2 and 

limD2(f)~(i) : i E dom(fj~)} = a; and ue C_ [al ,a2)  is finite and ~/e • ~ 2  

then 

g,(n) CI ¢ 0  • D 2 .  
~<k g<k 

Now we have that  (AT), <_A~) is a non-empty partial order. Take i = a = 0 and 

D the filter of all cofinite subsets of w. In (AT), _<Ap) every increasing sequence 

of length < a has an upper bound, namely, take the filter generated by the union 

in the first coordinate and take the supremum in the second and in the third 

coordinate. 

Now we come to the first kind of sets we want to meet: If B C_ a; and (D, i, ~) • 

AT) then there are some D ~, i ~, a '  such that  (D' , i~,a  t) >_.4p (D,i ,a) and that  

B • D r or that  w \ B  • D ~. Why? Try D ~-- the filter generated b y D U { B }  

and the same i and a. If this fails then we can find k < w, such that  for g < k 

we have j~ < i, such that  dom(fj~) • D'  and limD,(fjl(i) : i E dom(fj~)) = ~, 

ue • [t~ \ a] <~°, ~ • ~ 2  and such that  

{n • N dom(fj~) : f~(n) N A[~] ¢ O} rh B = OmodD. 
e<k 

Let a ~ < n be such that  a <_ a '  and A¢<k ue C_ a ~. Let D t be the filter generated 

by 

k < co,je < i,ue • [a' \ a]<~°,rle • ~ 2 } .  

Then aJ \ B E D', and (D', i, a ')  • AT). 

Finally, there is a second useful kind of dense sets: If (D, i, a) • AT) then for 

some D ~, a '  we have that  (D',i + 1,c¢) • AP.  
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Proof." Let M -~ (H(x) ,  E) such that M fl ~ E ~, (D, i, ct) E M, 5cg E M, and 

IMI < to. Suppose that dom(fi)  E D and that l imD(f l (k)  : k E dom(fi)> = w. 

Let c~' = MM~. Let D1 be the filter in the boolean algebra in 7)(w)MM generated 

by 

E N dom(f j~ ) : f ] , (n )MA [v~] # O } :  
e <k  

< w, je <_ i,ue E [a' \ a]<s°,rje E u~2}. k 

Since in M, /i is (g, x)-o.k., this has the infinite intersection property. Let D~ 

be an ultrafilter in M extending D1. Let D'  be the filter on w in V that D~ 

generates. 

Now we take an increasing chain ((DJ,iJ,c~J) : j < a) in the partial order 

(AS o, _<Ap) such that iJ is unbounded in a and D := U j < .  DJ is an ultrafilter. 

Then D fulfills (4.2). I 

Now we use equation (4.2) of 4.7, which implies that ,4 is (g, ~)-o.k., to con- 

struct an extension in which A is still (g, tc)-o.k. The following preservation 

theorem is a bit more general: it works also when the D~'s do not coincide. In 

our application, however, they will coincide. 

CLAIM 4.11: Assume that 

(a) i is (g, 
(b) / )  = (D v : ~ E <~w), D v = D, D is an ultrafilter on co as in 4.7. 

(c) Q/) = {T : T C_ <~w is a subtree with exactly one <-minimal element, and 

for some ~ E T,~ ~_ u E T ~ {k : Fk E T}  E D,} ,  ordered by inverse 

inclusion. (The <-minimal ~ of this sort is called the trunk o fT ,  tr(T).) 

Then IFQo "A is (g, ~)-o.k.". 

Proof'. We use the fact [10] that QD has the pure decision property: Let ~i, 

i E w, be countably many sentences of the QD-forcing language. We think of 

names ]e, g < k, for some elements of Pg and ~i = "(the i-th element of B = 

N~<k dom(ft))  /)~ and A~<k ft(/)~) = r r l  ~2 ~,, The pure decision property ~ ~ ~ kJ~ , i '  Je,i} " 

says: 

Vp E QD3q >_tr pYr >_ qVi(r IF ~i ~ (3si E r)q [sd IF ~i), 

where we write _>tr for the pure extension: q <_tr r if r C_ q and tr(q) = tr(r), 

and q[Sd = {~7 E q : s~ _ r]}. 
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Towards a contradiction we assume that  there is a counterexample. By 

Claim 4.4 (first (b) and then (a)) we may assume that it is of the following 

form: 

p* I~-"(fe : g < k) are functions from w to w 

and for i E w, max{fJ( i )  : g < k} < min{]~(i  + 1) :  g < k} 
(4.3) 

and there is no c~ < a such that  the statement 

Definition 4.3(3) holds." 

We find q such that  

(a) q E P,  

(9) q p*, 
(~) for all i E w for all f~,i E w, f~,i C_ [O,g(f~,i) ) of size bigger than f~,i we 

have that  

i f r  _> q,r]F-"fe(~)= (f~,i, fe2,i) '', 

then also for some si E r, the condition q[Sd forces the same. 

We fix such a q. 

Now we set for u E q and g < k 

B 1 = {i E w : some pure extension of q['] decides re(i)}. v,g 

We say (u, g) is 1-good if B 1 1 2 ~,e E D. Let for i E Bl,e, h~,e(i) -- (hut ,hv,e) the 

value of re(i) tha t  is given by the pure decision. This is well-defined because any 

two pure extensions are compatible. Of course, by the requirements we had put 

on the counterexample, we have that  limD(hl,e(i) : i E B~,e) = w. 
We say that  (u, g) E q x k is 2-good, if it is not 1-good and we have for all 

m E w that  

M,,e,m = {j  E w:  (3i E w)(h~i,e(i)) is well-defined, and h~j,e(i ) > m)}  E D. 

So, for 2-good but not 1-good (u,g) we may define for j E Mv,e,m, 

g~,,e(j) =hvj,e(ivj,e), 

where ivj,e is such that  hvj,e(ivj,e) is defined in hlv~j,e(ivj,e) > m 

and if there is a maximal such i, then take this as iaj,e. 

We show that  there is M~,e, m E D, M,,e,m D_ M~,e, m such that  for j E M~,e, m 
there is a maximal such i: If hvj,e(i) is defined and i ~ < i then there is some 

pure extension deciding haj,e(i ~) since there are only finitely many possibilities 
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for its values, by the third line of(4.3). Hence some pure extension decides the 

value. Hence also h~j,e(i') is defined. If hjj,e(i) is defined for all i, then (]j ,  6) 

is 1-good. Hence, if (dj, g) is 2-good but not 1-good, then there is a maximal i 

witnessing j E M~,e,m. If {j : (dj, g) is 1-good } E D, then by gluing together 

suitable pure extensions rj of q[~J] together we get a pure extension of q[V] that  

shows that  (v, 6) is 1-good. Hence X = {j : ( ] j  is 2-good and not 1-good } E D. 

So we may take M~,~, m = M~,e,m M X .  In order to simplify notation, we assume 

that  M~,,e,m = M,,e,m. 
Also from the third line of equation (4.3) we get that  for every u E q either for 

all g < k, (u, 6) is 1-good, or no (u, 6) is 1-good. In the latter case there is some 

i . ,  such that  for all g < k, dom(h.,e) = i~ or dom(h.,e) = i .  + 1. Moreover, also 

by(4.3) we get that  if for some g < k, for all m, M~,e,m E D, then for all g < k, 

for all m, M,,e,m E D. So if (v, g) is 2-good, then all (u, g~) are 2-good. We call u 

/-good if there is some g such that  (u, g) is/-good. We set M.,m = Ne<k M~,e,m. 

We fix some pseudo-intersection M~ of (M~,m : m E w), such that  

lim(i~j : j E M~) = w. 

Then we also have that  limD(min{g~,e(j) : g < k} : j E M~) = w, because for 

each z < w, {j : min{g~,e(j) : g < k} < z} is a finite set. Hence g,,e E ,~g. By 

combining with an enumeration of M, ,  we may assume that  dom(g.,e) = w E D. 

We will not write this enumeration, in order to prevent too clumsy notation, but 

we shall later apply that  D is as in 4.7 for ~g, and therefore we need that  the 

domains are in D. 

Now we take X sufficiently large and N -~ (H(x),  E) such that  ([e : g < k) E N, 

(B~, e,h~,e,g~,e : v E q,g < k) E N,  q ,D E N.  We t a k e a *  = sup(NMt~). We 

claim that  q forces that  a* is as in the Definition 4.3(3). 

If not, then there are counterexamples ue E [a \ a*] <~° and Ye E u~2 and 

r E Qo,  r > q, and b* such that  

r >_ q, and 

r I~-QD " N  dom(fj)  = w and 
(4.4) e<k 

(Yi E w)max{f~( i ) :  g < k} < min{f~(i + 1): e < k} 
~ 

and {b E w: (Yg < k)(f~(b) M .~[fd # 0)} C_ [0, b*]". 

FIRST CASE. There is some ~, E r with tr(r) _~ u such that  all (u, g) are 1-good. 

Now we take for each t E w, some pure extension of ql "] of rM such that  it forces 

Ae<k(h,,e [ t = fe I t). Since fi~ is (g,a)-o.k., and since all is reflected to N, and 

by the choice of a*, we have that  I = {n E w : (Vg < k)(h2,e(n) M fi~[v~] # O} is 
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infinite. So we take t E I such that  t > b*. Now ql ~] contradicts (4.4). 

S E C O N D  CASE. There is some v E r such that  all ~, ~ < k are 2-good but not 

1-good. We set g~,e(J) = h~i,~(i~i,~) as purely decided above q[~/]. 

FACT: Now (g~,e : ~ < k) is as required in the definition of ,4 being (g, a)-o.k., 

because w = l imD(gi(i~j) : j E w). 
Now we take for each t E w, some pure extension ql ~j] of r [~j] such that  it 

determines A~<k g-,/ F t. Since A is (g, a)-o.k., and since all is reflected to N, 

and by the choice of c~*, we have that  J = {n E w:  (W < k)(g~,~(n) M .~[w] ¢ 0} 

is infinite. Then also J = {i~n : n E J} is infinite. So we take t > b*, t E J. Now 

the gluing together of ql ;j], j E Ne<k Mv,~,t, contradicts (4.4) because we have 

g~,~(j) = h~zj,e(iL;j,~) = f~(iL;j), if ql ~] E G. Here we write f t  for f_~[G]. 

THIRD CASE. All u E r are neither 1-good nor 2-good. We shall prove some- 

thing stronger: 

An end-segment of the generic U{~ : there is some element q E 

G with trunk ~7} can be thinned out (so that  still infinitely many 

points are left) and injected into an infinite subset of {n E w : 

Ae<k f2[G](n) N A [~] ~ O}. 

This is more than enough. 

Let i.,e = max(B~, e) < w, because (v,e) is neither 1-good nor 2-good. Let 

~'* = dom(h.,e) such that  ~,'* = z,,e'* or ~,* = z~, t '*  + 1. By the premise(4.3), there are 

such i*. There is r > q with no v E r being 1-good or 2-good in N. Without loss 

of generality, we take q like that.  Now we t ry  to shrink q purely. Let ~'o = tr(q). 

First: We have that  f_t [ i* is decided by q. The range of (i*~ : ffj E q) is 

bounded modulo D because v is not 2-good. Hence we may assume that  there 

is just one value i**. So say (after shrinking q) that  it is constant with value 

~v --  ~p" 

Second: We have that  v0 <1 ~' E q implies that  q[~] decides f~ I i**. 
Third: We have that  if i E [i*,i**] then limn(f~j,e(i) : j E w) = w by the 

definition of i* and i**. So define g,,~,i by g~,e,i(j) = h~j,~(i). So g~,t,i E N is a 

function of the right form. 

We have by the definition of c~*, for all i E [i*,i**) for all ~, E q for all u~, ~t 

that  

A := {b: (Vg < k)g2,,t,i(b) M A [nt] ~ O} E D. 

Since the range of U{~ : there is some element q E G with trunk ~} =: r/~ is 

eventually contained in every set in D, we now find the following infinite set: We 
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take ( ~  : n • w} such that  ~ • r ange(~)  ~ A and such that  i**n~ < i*~+. We 

set ~ = ~ [ I ~  - 11. Then we have for almost all n such that  ~ • A and hence 

for a l l /  • [i~ ,i~*): g(,~,~,i(?ln(I?~n --  11) ) ---- h(~n~(in,_ll),g(i) = hn~,e(i) : re(i). 

So [-Jne~[i~,, i~*] C* {b: (Ve < k) fy  (b) A 2 [n~] ¢ 0} is infinite. | 

CLAIM 4.12: Let ~ = cf(n) > wl. Let V ~ 2 ~ <_ ~ and let P0 = C~ be the 

forcing adding ~ Cohen reals. We fix some function g • V such that every 

hyperarithmetic function is computable in every g' >__ g. We let Go be Po-generic 

over V and set 171 = V[G0]. Let in 1/1, A be the enumeration of the n Cohen 

reals. 

(1) 
(2) 

In V1, there is (P,_~) • Kg such that IF-p "¢-= ~1". 

For (P, .~) as in (1), we have that in 171, [~-'p "every hyperarithmetic rea/ in 

V is weakly needed for the reaping relation". 

Proof: (1) By 4.7 we have that  fi, is (g, ~)-o.k. in 171. According to 4.9, we may 

choose in V1 a <-increasing sequence such that  (Pi, -4) • K ,  Pi+l = Pi * Qg' and 

(Pa,Qi : i < btl,j _< R1) is a finite support iteration and D i = {/5~ : r / •  <~w}, 

Div = D i • V pi enjoy the properties required there. 

Then P forces that  ~ = RI: P consecutively adds ("shoots") t~l reals through 

the ultrafilters D ~ in the intermediate models V[Ga], a < wl. Let f • V P be 

a real. Then, by the countable chain condition, there is some a < Wl such that  

f • V P~. Then f- l[{0}] • D a or ]-1[{1}] • 0 %  Since Q ~  adds a real ra that  

is almost a subset of every member of D a, we have that  ra refines f .  Hence in 

V P ,  {ra : a < Wl} witnesses r = R1. 

(2) Now by part (1) and by Lemma 4.6 the proof of (2) follows. | 

Finally, taking P = P0 * ~P and G P-generic over V and A as in 4.11, statement 

(2) yields that  in V[G] every hyperarithmetic real from V is weakly needed for 

the reaping relation, and thus the proof of Theorem 4.1 is finished. 

5. T h e r e  m a y  be  m o r e  weak ly  n e e d e d  reals  th a n  needed  reals 

Under CH, or if I[R[I = 2s°, the notions "needed for R" and "weakly needed 

for R" coincide. In this section, we show that there is some quite simply defined 

relation R and that  there is some model of ZFC in which there are more weakly 

needed reals for R than needed reals for R. The idea is to use the forcing model 

from the previous section. 

CLAIM 5.1: There is a simply defined relation R for which it is consistent that 

the notions "weakly needed" and "needed" do not coincide. In fact, in the forcing 
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models V, V[G] from the previous section, in V[G] every needed t e a / f o r  R is 

recursive (hence in V), and all the hyperarithmetic (and possibly more) reMs are 

weakly needed for R. 

Proof: Let Ro be the ordinary reaping relation, which we write for functions on 

~2 x *°2: 

~Rou *¢ ~, u E ~2 A (3°°n)u(n) = 1 A r/ [ u-1{1} is almost constant. 

Let R1 be as follows: 

~ R I ,  ta ~ , ,  e •2 A (?~n)~(n)  = 1 A (3°°n)u(n) = 1A 

( l u - l { 1 }  n ~ - l { l } n n l  ) 1 
It/-1{1} M n I : n E w converges to 2" 

We set R = Ro U Rt and use V P from the previous section. There we have 

that  P = P0 * Q, Po is the forcing adding ~ Cohen reals, and A is an enumeration 
~ 

of the names of these Cohen reals, and Q is the iteration described in 4.9. Then 

in V P we have that  ItRII < tlRott = R1. 

We first show that  every hyperarithmetic real r/E V is weakly needed for R in 

this model. We take some R-adequate se t /~  in V P of power R1. We let 

lie = {i < ~ : (3x • 7t)(AiRex)} .  

So, by the definition of adequate we have that  Y0 U Y1 = ~. If IY0l = ~, then by 

the proof of 4.5, we get some x • 7~ whose enumeration f with f ( n )  = m if m is 

the n th  element of x is so large in the eventual domination order that  the real r I 

is computable from it. 

We now show that  I1/1[ < a. Then it follows that  [Yo[ = ~. Towards a 

contradiction, we assume that  [YI[ = a. In the model from the previous section 

we have that  P = Ui<~I Pi, Po adds n Cohen reals Aa, a < n, Pi increasing and 

continuous, Pi+l = Pi * QD~ as there, P = P0 * Q. We work in V Po. We have 

that  for some p* • Q and some Q-names u i, i < COl, 

p* 'FQ/po = n a g  = i < Wl}. 

Let Y* = {a : 3pa _> p*,p~ I~-Q/p o o~ • ]I1}. By the c.c.c, of Q/Po, we have that  

Y* • [~]~, and for a E Y* we choose pa such that  p* <_ pa I~-Q/po "a • YI". So 

for a E ~ we have that  AaRlVi(~) and hence for a large enough n* for ~ many 

• Y* (without loss of generality, for all a • Y*) we have 

• " [ [ u ~ I ) { 1 } M A ~ D n [  ~ ] )  
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Moreover, there is a A-system for the dompc` E [~ \ {0}] <~ whose root is u*, and 

we assume that  for a E Y*, i (a)  = i*. 

So we may assume that  for j E u* we have that  pc,(j) is an object with trunk 

pj and not just a P0-name. By pure decidability for some u* E V P° we have: 

For every ct E Y* and m for some pure extension q of pc, with the same domain 

q IF ui. [ m = u* [ m. By the choice of n* we get an easy contradiction: Suppose 

p E Po and 

p IFp o "Va E Y*Vn >_ n*3qc` >_tr Pc,, 

" I u * - ' { 1 } M A a n n ( * ) I  E [~ 3-I .... 
qc  ̀IFQ/P° IAc` n ' 41 

This is impossible, because we may assume that  u* E V (it needs only countably 

many of the ~ Cohen reals) and we may arrange all other Ac`'s so that  the quotient 

will be arbitrary. The forcing P/Po does not change the value of the quotient. 

Now we show that  if a real is not recursive then it is not needed for R. If 

7/ is not recursive and x E ~2, let {x,~} E N -< (H(x) ,  E), N countable. Let 

u = u(x, ~) be random over N, and we claim 

(5.1) ~ ~Tur P" 

Proof of  (5.1): Otherwise we would have that  ~ is recursive in the ground model. 

This is proved in [5] and in [4, Proposition 14]. Since the proof is short, we repeat 

it here: Suppose 

(5.2) P [~-Random "M computes rl from the oracle v". 

Then by the Lebesgue density theorem we find s E <~2 such that  above s, p 

has Lebesgue measure > ~ - Leb({p : s ,~ p}. Then we set 

B~ = {u' E •2 : s ~ u' and from u' M computes r/(n) correctly}. 

From(5.2) we get that  Leb(Bn) > 1~o " Leb({p : s ~ p}. So for every sufficiently 

large m E w we have that  

(5.3) 2 m-lg(8) <_ J{u' E m2 : s '~ u'and from u' M computes rl(n) correctly}I. 

So we can run a machine, that  has s as a fixed ingredient, and which, given input 

n, increases m successively, and then computes y(n) with all possible oracles 

above s of length m > lg(s) and decides with (5.3), when it is true for m (and 

hence for all later m), which is the right value. So equation (5.1) is proved. 
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Thus the collection {u(x,~) : x  C ~2} is an Rl-adequate family and hence an 

R-adequate family. So, if ~ is needed for R, there is some u such that  77 <~Tur 12, 
and hence by equation (5.1) ~ is recursive. | 

6. N e e d e d  reals for the  reaping relation 

In this section we prove in ZFC that  for any submodel not all hyperarithmetic 

reals in it are needed for the reaping relation. Since in the model V[G] from 

Section 4 all hyperarithmetic reals in V are weakly needed for the reaping relation, 

the model V[G] shows that  also for the reaping relation it is consistent that  weakly 

needed and needed do not coincide. In contrast to the result on the relation R 

from the previous section, we do not prove that  only recursive reals are needed 

for the reaping relation. It is open whether our result here is sharp. 

THEOREM 6.1: If  ~ l is needed for the reaping relation, then ~) is arithmetical. 

So, applied to the pairs of models from Section 4, we get: 

CONCLUSION 6.2: For any V, V[G], not all hyperarithmetic reals are needed for 

the reaping relation in V[G]. 

Since there are non-arithmetical hyperarithmetic reals, 6.2 follows from 6.1. 

Proof of 6.1: Suppose that  ~/ is needed for the reaping relation. Then by 

Fact 1.15 there is some B* C a; such that: 

(6.1) For all X, if X C_ B,  = B 1 or X C_ w \ B,  = B,  2 then ~ is recursive in X. 

For all X that  refine B*, we have that  ~/is recursive in X. Note that  equa- 

tion (6.1) is similar to ~? being hyperarithmetic: the difference is that  U is com- 

putable also in every infinite subset of the complement of B,.  Unless ~ is recur- 

sive, we have that  B,  in equation (6.1) is infinite and coinfinite. 

Notation 6.3: Let ((M~, M~, a t ,  a~) : n < w) be a recursive list of the quad- 

ruples (M1, M2,al,a2) such that  

(1) M1, M2 are Turing machines (with reference to an oracle), 

(2) al ,  a2 are finite disjoint sets. 

Without loss of generality, a t U a~ C n and each quadruple appears infinitely 

often. (This will be used in 6.10.) 
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Definition 6.4: We say/~ = (En : n E w) is special if 

(i) En is an equivalence relation on w \ n, and 

(ii) for m < n, En refines Em [ (w\n) ,  i.e., every Era-class is the union of some 

En-classes plus some subset of n, 

(iii) if A is an En-equivalence class, then A \ (n + 1) is divided by En+l in at 

most two equivalence classes, and E0 has finitely many classes, 

(iv) if 

(a) A is an En-equivalence class and 

(t3) there is a partition X1,)(2 of A \ (n + 1) such that  for all j < w, 

Y~ C w , i  = 1,2 ( i f a  n C Yi C Xi t3an  hi < w ,  and if the machine 

Mff running with input j and oracle Y~ finishes its run giving hi, then 

hi = h2), 

then En+I induces such a partition of A. (But note: it need not be the 

same partition.) 

LEMMA 6.5: There is a special E that has as a three place re/ation 

{(n ,x ,y)  : xEny} Turing degree <_ 0 W and such that if A is an En-equivalence 

class then A <_Tur 0 n+l • 

Proof'. We choose En by induction on n. 

n = 0. If for every m there is a partition (Co,C1) o f m  such that  for i E {1,2} 

for every bi C ci and j < n, if M ° running with input j and oracle bi [ m and 

gives the results ki then k0 = kl, then we choose among these pairs (c~,c~)  

such that  c~ is minimal in the lexicographical order. If (c~, c~ n) are defined for 

every m, then we have that  m 1 <_ m 2 < m 3 ~ c~ 2 a m 1  <__lex c~ 3 a m 1 .  So 

(c~ : m E w) converges to some cl. Now we define E0, having two classes: cl 

and w \ cl. The relation Eo is computable in 01. 

In the step from n to n + 1, the relation En+I is defined similarly, with the 

modification that  we use the description of E,n as a parameter and take partitions 

(Co, cl) of (m \ n) A C for each En-class C and oracles bi U a n. Clearly using 0 n+l 

we can define En+I and it is in the degree 0 nq-2. 

Note different successful computations have the same outcome. |6.5 

LEMMA 6.6: Ifrl is needed for reaping and E that is special, then there aren 6 w 

and an En-class A such that ~ is recursive in A. 

Proof'. We assume the contrary. Based on this assumption, forcing with Q$,B. 

and absoluteness we will lead to a contradiction. The proof will be finished with 

Claim 6.10. 
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Definition 6.7: For a special/~ we define Q = Qk,B. as the following notion of 

forcing: 

(1) p E Q has the form p = (n, A, bl, b2) = (n p, A p, bPl, b p) such that 

(i) n < co, 

(ii) 

(iii) 

(iv) 
(v) 

(2) p _< q 
(i) 

(ii) 

(3) = 
~ 

A is an En-equivalence class, 

A is infinite, 

bl, b2 are disjoint subsets of n, 

bl C_B*,b2C_w\B* .  

iff 

n p < n q, A p D_ A q, b p C_ b q, for i = 1,2, 

u \ (bl u g )  c A, .  
[J{b/p : p E GQ) is a Q-name of a subset Bi E V[G] of B* for i = 1, 2. 

Q is equivalent to Cohen forcing and independent of /~  and B. .  Nevertheless 

we keep the complicated conditions, because they fit better to the investigation 

of the ~'s needed for the reaping relation. We shall show: ~ is computable in the 

generic (hence it is recursive) or it is computable in some En-class A. So, for the 

following three claims we assume that ~ is not computable in any En-class A. 

CLAIM 6 .8 :  F o r  i --  1, 2 we have 

(1) [F-Q "bi is an infinite subset of B~" 

(2) For denselymanyp*, p* IPQ " n P  ~ Ai=x,2 (M~ computes ~1 with the oracle bi)". 

Proof: (1) It is enough to find for a given p E Q some q _> p, q E Q such that for 

i = 1, 2, ~ ~ b q. Now A p n B~ is infinite, because of the hypothesis on B* and 

because ~ is not recursive in A p by the assumption. We may choose h E A p M B*, 

h _> max(max(bP), max(bP)) + 2 and an infinite Eh-class A C_ A p, which exists 

because A p is infinite and because Eh has finitely many equivalence classes. We 

define q as n q = h + 2, A q = A, bql = b p U {h}, b~_ i = b~_~ U {h + 1). 

(2) The statement made in equation (6.1) on B* and on ~ is II~ and holds in V; 

hence it holds in V[G] as well by Shoenfield's absoluteness theorem [7, Theorem 

98, p. 530]. We arrange by possibly increasing n p• that the machines witnessing 

the recursiveness are M~ ~" . Now we apply it in V[G] to part (1) of this claim. 
| 

We fix p*, M~ ~p* , M~ p~ as in part (2) of Claim 6.7. 

FACT 6.9: There is some q > p* such that for i = 1, 2, M/nq = M/up* and such 

that b q = a~ q. 
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Proof: For some n q > n p" the quadruple ( M r  n~ n ~ nq ,M~ ,a I ,a 2 ) is equal to 
(M~"*, M~ p* ,~ILP* ,~2 ~p* J-~ Let A be an infinite Enp. -class which is a subset of A p* . 

* n q n q  So we t a k e q = ( n  ,A,a  1 ,a 2 ). 1 

CLAIM 6.10: For n*, A the demands (a) + (fl) of clause (iv) of 6.4 hold, hence 

the conclusion. 

Proof: We work first in V[G]. There, by 6.8, Xi = A M B~ and A exemplify 

6.4(iv). But 6.4(iv) is a E12-statement of the parameters (A, a~, a~), and therefore 

it holds in V as well by Shoenfield's absoluteness theorem. 1 

Finally we finish the proof of Theorem 6.1: Let A1 ~ A2 be the E~.+I- 

equivalence classes which are C_ A, with As for M~ as in 6.4(iv). So by 6.4(iv), 

is computable in En*+l. I 

7. Coincidence 

In this section we give a condition on a relation R under which the notions 

"needed for R" and "weakly needed for R" coincide and show that the condition 

is fulfilled for the relation Rrandom defined below. 

Definition 7.1: The domain of the relation Rrandom is {T C_ <~2 with no leaves 
1 and Leb(lim(T)) > 3}, i.e., the domain of the notion of forcing from Section 1. 

The range of t~random is w2. We set TRrandom/] it3~/J E AT : :  {p ~ w2 : for some 

p' E lim(T) we have that p =* p'}. 

Definition 7.2: R is boring if 

(a) R is a 2-place Borel relation on ~2 and (Vx E ~2)(3y E ~2)(xRy), and 

(b) for every xl,x2 E ~2, if x2 is not recursive, there is x E 2 ~ such that 

(W)(xn.  -+ (XlR  A - (x2 <v r ,))). 

CLAIM 7.3: (1) Assume that R is boring. Then the notions of being needed for 

R and being weakly needed for R coincide and coincide with being recursive. 

(2) The relation Rrandom is boring. 

Proof: (1) We have shown that every weakly needed real for R is recursive. 

Since every recursive real is needed for R, and since weakly needed reals are 
needed, this will complete the cycle of implications. 
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Suppose that  x* E w2 is not recursive. We show that  x* is not weakly needed 

for R. Let Y be an R-adequate set of minimal cardinality. Let 

Y* : { l]E Y : ~x* ~__Tur P}. 

Y* c_C_ Y, and hence [Y*[ _< IY[ = [[R][. We show that  Y* is also R-adequate. 

Then, by the definition of Y*, x* is not needed for R, and the proof is finished. 

Let xl 6 ~2 be given. We take x2 = x*, and apply (b) of the definition of 

"boring". So we get x as there. Since Y is R-adequate we find some ~ E Y such 

that  xRu. Hence by R's boringness we have that  x lRu  A x2 ~Tur 12. So/2 E Y* 

and xl Ru. 

(2) Let Xl,X2 be given. We take N -~ (H(~3),  E) such that  xl,x2 6 N. Let T 

be Amoeba-generic over N. Then T = x is as claimed in Definition 7.2(b): Let 

u 6 2 ~ be such that  u 6 AT. The closed set T is a subset of xl by the Amoeba 

genericity of T. Hence XlRrandomU. The set {u : x2 ~_Tur P} is a tail set and 

hence has measure zero or one. Since every real recursive in a generic for random 

forcing is recursive (see the proof or equation (5.1) or [4, Proposition 14] or [5]) 

and since x2 is not recursive, every generic real for the random forcing avoids the 

set. Hence it has measure zero and is disjoint from AT, and therefore for u E AT, 

CONCLUSION 7.4: Needed reals t:or Rrandom and weakly needed reals for Rrandom 
coincide and axe just all the recursive reals. I 
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